36 OPTIQUE GEOMETRIQUE

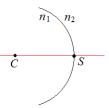
Pr B. Boutabia-Chéraitia

5- LE DIOPTRE SPHERIQUE

C'est une calotte sphérique réfringente, qui sépare deux milieux homogènes et transparents d'indices différents.

C: centre du dioptre. (CS): axe optique.

S: sommet du dioptre.



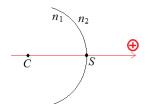
5-1- CONVENTIONS DE SIGNES

On oriente l'axe optique dans le sens de propagation de la lumière.

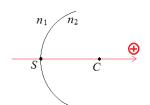
Lumière

S: origine des coordonnées.

 $R = \overline{SC}$: rayon du dioptre.



 $R < 0 \Rightarrow$ dioptre concave.



 $R > 0 \Rightarrow$ dioptre convexe.

37 OPTIQUE GEOMETRIQUE

Pr B. Boutabia-Chéraitia

5-2- FORMULE DE CONJUGAISON DU DIOPTRE SPHERIQUE

AI : rayon incident.

 ${\it CI}$: rayon de courbure

 \Rightarrow (*NN'*) : normale.

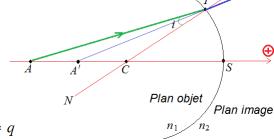
i : angle d'incidence.

r: angle de réfraction.

Loi de Descartes

$$\overline{n_1 \sin i = n_2 \sin r} \quad r < i$$

On pose: $\overline{SA} = p$ et $\overline{SA'} = q$



 $n_1 < n_2$

A: objet réel $(p<0) \rightarrow A':$ image virtuelle (q<0)

On constate que:

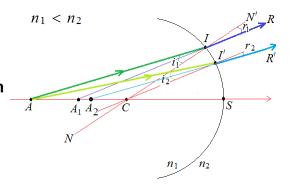
38 OPTIQUE GEOMETRIQUE

Pr B. Boutabia-Chéraitia

L'objet A peut avoir plus d'une image. En effet:

$$i_2 \neq i_1 \Rightarrow A_2 \neq A_1$$

Le dioptre sphérique n'est donc pas stigmatique.
On fait donc l'approximation de Gauss: *i* et *r* très petits ⇒ rayons incident et réfracté para-axiaux.



 \hookrightarrow On démontre que pour $D_{n_1-n_2}$:

 $\frac{n_1}{p} - \frac{n_2}{q} = \frac{n_1 - n_2}{R}$: **formule de conjugaison** du dioptre sphérique ou **formule de Descartes**.

39 OPTIQUE GEOMETRIQUE

Pr B. Boutabia-Chéraitia

Démonstration:

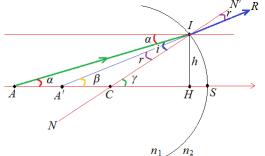
$$\overline{n_1 \sin i} = n_2 \sin r$$

 i et r petits $\Rightarrow n_1 i \simeq n_2 r$

$$* \alpha + i = \gamma$$

* Dans
$$\widehat{A'IC}$$
: $\gamma = r + \beta$

$$\Rightarrow n_1(\gamma - \alpha) = n_2(\gamma - \beta)$$



Les rayons étant paraxiaux, on peut écrire avec une bonne approximation:

$$\alpha = \tan \alpha = \frac{h}{AH} \simeq \frac{h}{AS} = -\frac{h}{p}$$

$$\beta = \tan \beta = \frac{h}{A'H} \simeq \frac{h}{A'S} = -\frac{h}{q}$$

$$\gamma = \tan \gamma = \frac{h}{CH} \simeq \frac{h}{CS} = -\frac{h}{R}$$

$$\Rightarrow n_1(-\tfrac{h}{R}+\tfrac{h}{p})=n_2(-\tfrac{h}{R}+\tfrac{h}{q}) \Rightarrow \tfrac{n_1}{p}-\tfrac{n_2}{q}=\tfrac{n_1-n_2}{R}$$

40 OPTIQUE GEOMETRIQUE

5-3- FOYER OBJET DU DIOPTRE SPHERIQUE

C'est le point objet dont l'image se trouve à $l'\infty \Rightarrow$ rayon réfracté // axe optique.

F: foyer objet ou point focal objet.

On pose: $\overline{SF} = f$: distance focale objet.

$$\frac{n_1}{p} - \frac{n_2}{q} = \frac{n_1 - n_2}{R} \implies \frac{n_1}{f} - \frac{n_2}{\infty} = \frac{n_1 - n_2}{R} \implies f = \frac{n_1}{n_1 - n_2} R$$

5-4- FOYER IMAGE DU DIOPTRE SPHERIQUE

C'est le point image dont l'objet se trouve à $J'\infty \Rightarrow$ rayon incident // axe optique.

F': foyer image ou point focal image.

On pose: $\overline{SF'} = f'$: distance focale image.

$$\frac{n_1}{p} - \frac{n_2}{q} = \frac{n_1 - n_2}{R} \Rightarrow -\frac{n_2}{f'} = \frac{n_1 - n_2}{R} \Rightarrow f' = \frac{n_2}{n_2 - n_1} R$$

Remarques:

$$\hookrightarrow f = \frac{n_1}{n_1 - n_2} R \implies \frac{n_1 - n_2}{R} = \frac{n_1}{f} \implies \frac{n_1}{p} - \frac{n_2}{q} = \frac{n_1}{f}$$

Pr B. Boutabia-Chéraitia

